Amazon cover image
Image from Amazon.com

The physics of glaciers / K.M. Cuffey, W.S.B. Paterson.

By: Contributor(s): Burlington, MA : Butterworth-Heinemann/Elsevier, c2010Edition: 4th edDescription: xii, 693 p. : ill. (some col.), maps (some col.) ; 25 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780123694614 (alk. paper)
  • 0123694612 (alk. paper)
Subject(s): LOC classification:
  • GB2403.2 .C84 2010
Contents:
Machine generated contents note: ch. 1 Introduction -- 1.1. Introduction -- 1.2. History and Perspective -- 1.3. Organization of the Book -- Further Reading -- ch. 2 Transformation of Snow to Ice -- 2.1. Introduction -- 2.2. Snow, Firn, and Ice -- 2.2.1. Density of Ice -- 2.3. Zones in a Glacier -- 2.3.1. Distribution of Zones -- 2.4. Variation of Density with Depth in Firn -- 2.5. Snow to Ice Transformation in a Dry-snow Zone -- 2.5.1. Processes -- 2.5.2. Models of Density Profiles in Dry Firn -- 2.5.3. Reduction of Gas Mobility -- 2.6. Hoar Layers -- 2.7. Transformation When Meltwater Is Present -- Further Reading -- ch. 3 Crain-Scale Structures and Deformation of Ice -- 3.1. Introduction -- 3.2. Properties of a Single Ice Crystal -- 3.2.1. Structure -- 3.2.2. Deformation of a Single Crystal -- 3.3. Polycrystalline Ice: Grain-scale Forms and Processes -- 3.3.1. Orientation Fabrics: Brief Description -- 3.3.2. Impurities and Bubbles -- 3.3.3. Texture and Recrystallization
3.3.4. Formation of C-axis Orientation Fabrics -- 3.3.5. Mechanisms of Polycrystalline Deformation -- 3.4. Bulk Creep Properties of Polycrystalline Ice -- 3.4.1. Strain Rate and Incompressibility -- 3.4.2. Deviatoric Stress -- 3.4.3. Bench-top Experiments: The Three Phases of Creep -- 3.4.4. Isotropic Creep Behavior -- 3.4.5. Controls on Creep Parameter A -- 3.4.6. Recommended Isotropic Creep Relation and Values for A -- 3.4.7. Anisotropic Creep of Ice -- 3.5. Elastic Deformation of Polycrystalline Ice -- Appendix 3.1 -- Appendix. 3.2: Data for Figure 3.16 -- ch. 4 Mass Balance Processes: 1. Overview and Regimes -- 4.1. Introduction -- 4.1.1. Notes on Terminology -- 4.2. Surface Mass Balance -- 4.2.1. Surface Accumulation Processes -- 4.2.2. Surface Ablation Processes -- 4.2.3. Annual (Net) Balance and the Seasonal Cycle -- 4.2.4. Annual Glacier Balance and Average Specific Balances -- 4.2.5. Variation of Surface Balance with Altitude -- 4.2.6. Generalized Relation of Surface Balance to Temperature and Precipitation -- 4.2.7. Relation of Glacier-wide Balance to the Area-Altitude Distribution
4.3. Mass Balance Variations of Mountain Glaciers -- 4.3.1. Interannual Fluctuations of Balance -- 4.3.2. Cumulative Balance and Delayed Adjustments -- 4.3.3. Regional Variations of Mass Balance -- 4.4. Englacial Mass Balance -- 4.4.1. Internal Accumulation -- 4.4.2. Internal Ablation -- 4.5. Basal Mass Balance -- 4.5.1. Basal Accumulation -- 4.5.2. Basal Ablation -- 4.6. Mass Loss by Calving -- 4.6.1. The Calving Spectrum -- 4.6.2. Calving from Tidewater Glaciers -- 4.6.3. Calving from Ice Shelves -- 4.6.4. Calving Relations for Ice Sheet Models -- 4.7. Methods for Determining Glacier Mass Balance -- 4.8. Mass Balance Regimes of the Ice Sheets -- 4.8.1. Greenland Ice Sheet -- 4.8.2. Antarctic Ice Sheet -- Further Reading -- ch. 5 Mass Balance Processes: 2. Surface Ablation and Energy Budget -- 5.1. Introduction -- 5.1.1. Radiation -- 5.1.2. Energy Budget of Earth's Atmosphere and Surface -- 5.2. Statement of the Surface Energy Budget -- 5.2.1. Driving and Responding Factors in the Energy Budget -- 5.2.2. Melt and Warming Driven by Net Energy Flux -- 5.3. Components of the Net Energy Flux
5.3.1. Downward Shortwave Radiation -- 5.3.2. Reflected Shortwave Radiation -- 5.3.3. Longwave Radiation -- 5.3.4. Field Example, Net Radiation Budget -- 5.3.5. Subsurface Conduction and Radiation -- 5.3.6. Turbulent Fluxes -- 5.4. Relation of Ablation to Climate -- 5.4.1. Calculating Melt from Energy Budget Measurements -- 5.4.2. Simple Approaches to Modelling Melt -- 5.4.3. Increase of Ablation with Warming -- 5.4.4. Importance of the Frequency of Different Weather Conditions -- 5.4.5. Energy Budget Regimes -- Further Reading -- ch. 6 Glacial Hydrology -- 6.1. Introduction -- 6.1.1. Permeability of Glacier Ice -- 6.1.2. Effective Pressure -- 6.2. Features of the Hydrologic System -- 6.2.1. Surface (Supraglacial) Hydrology -- 6.2.2. Englacial Hydrology -- 6.2.3. Subglacial Hydrology -- 6.2.4. Runoff from Glaciers -- 6.3. The Water System within Temperate Glaciers -- 6.3.1. Direction of Flow -- 6.3.2. Drainage in Conduits -- 6.3.3. Drainage in Linked Cavities -- 6.3.4. Subglacial Drainage on a Soft Bed -- 6.3.5. Summary of Water Systems at the Glacier Bed
6.3.6. System Behavior -- 6.4. Glacial Hydrological Phenomena -- 6.4.1. Jokulhlaups -- 6.4.2. Antarctic Subglacial Lakes -- Further Reading -- ch. 7 Basal Slip -- 7.1. Introduction -- 7.1.1. Measurements of Basal Velocity -- 7.1.2. Local vs. Global Control of Basal Velocity -- 7.2. Hard Beds -- 7.2.1. Weertman's Theory of Sliding -- 7.2.2. Observations at the Glacier Sole -- 7.2.3. Improvements to Weertman's Analysis -- 7.2.4. Discussion of Assumptions -- 7.2.5. Comparison of Predictions with Observations -- 7.2.6. How Water Changes Sliding Velocity on Hard Beds -- 7.2.7. Sliding of Debris-laden Ice -- 7.2.8. Sliding at Sub-Freezing Temperatures -- 7.2.9. Hard-bed Sliding: Summary and Outlook -- 7.3. Deformable Beds -- 7.3.1. Key Observations -- 7.3.2. Till Properties and Processes -- 7.3.3. Constitutive Behaviors -- 7.3.4. Slip Rate ub on a Deformable Bed -- 7.3.5. Large-scale Behavior of Soft Beds -- 7.3.6. Continuity of Till -- 7.3.7. Additional Geological Information -- 7.4. Practical Relations for Basal Slip and Drag -- Further Reading
Ch. 8 The Flow of Ice Masses -- 8.1. Introduction -- 8.1.1. Ice Flux -- 8.1.2. Balance Velocities -- 8.1.3. Actual Velocities -- 8.1. How Surface Velocities Are Measured -- 8.2. Driving and Resisting Stresses -- 8.2.1. Driving Stress and Basal Shear Stress -- 8.2.2. Additional Resisting Forces and the Force Balance -- 8.2.3. Factors Controlling Resistance and Flow -- 8.2.4. Effective Driving Force of a Vertical Cliff -- 8.3. Vertical Profiles of Flow -- 8.3.1. Parallel Flow -- 8.3.2. Observed Complications in Shear Profiles -- 8.4. Fundamental Properties of Extending and Compressing Flows -- 8.4.1. General Concepts -- 8.4.2. Uniform Extension or Compression -- 8.5. General Governing Relations -- 8.5.1. Local Stress-equilibrium Relations -- 8.5.2. General Solutions for Stress and Velocity -- 8.5.3. Vertically Integrated Force Balance -- 8.5.4. General Mass Conservation Relation (Equation of Continuity) -- 8.5.5. Vertically Integrated Continuity Equations -- 8.6. Effects of Valley Walls and Shear Margins -- 8.6.1. Transverse Velocity Profile Where Basal Resistance Is Small
8.6.2. Combined Effects of Side and Basal Resistances -- 8.7. Variations Along a Flow Line -- 8.7.1. Factors Controlling Longitudinal Strain Rate -- 8.7.2. Local-scale Variation: Longitudinal Stress-gradient Coupling -- 8.7.3. Large-Scale Variation -- 8.8. Flow at Tidewater Margins -- 8.8.1. Theory -- 8.8.2. Observations: Columbia Glacier -- 8.9. Ice Sheets: Flow Components -- 8.9.1. Flow at a Divide -- 8.9.2. Ice Streams -- 8.9.3. Ice Shelves -- 8.9.4. Transition Zone Between Grounded and Floating Ice -- 8.9.5. Flow Over Subglacial Lakes -- 8.10. Surface Profiles of Ice Sheets -- 8.10.1. Profile Equations -- 8.10.2. Other Factors Influencing Profiles -- 8.10.3. Relation Between Ice Area and Volume -- 8.10.4. Travel Times -- 8.10.5. Local-scale Relation of Surface and Bed Topography -- Further Reading -- ch. 9 Temperatures in Ice Masses -- 9.1. Introduction -- 9.2. Thermal Parameters of Ice and Snow -- 9.3. Temperature of Surface Layers -- 9.4. Temperate Glaciers -- 9.4.1. Ice Temperature -- 9.4.2. Origin and Effect of Water -- 9.4.3. Distribution of Temperate Glaciers
9.5. Steady-state Temperature Distributions -- 9.5.1. Steady-state Vertical Temperature Profile -- 9.6. Measured Temperature Profiles -- 9.7. General Equation of Heat Transfer -- 9.7.1. Derivation of Equation -- 9.7.2. Boundary and Basal Conditions -- 9.8. Temperatures Along a Flow Line -- 9.8.1. Observations -- 9.9. Time-varying Temperatures -- 9.10. Temperatures in Ice Shelves -- ch. 10 Large-Scale Structures -- 10.1. Introduction -- 10.2. Sedimentary Layers -- 10.3. Foliation -- 10.3.1. Elongate Bubble Forms -- 10.3.2. Finite Strain -- 10.4. Folds -- 10.4.1. Folding in Central Regions of Ice Sheets -- 10.5. Boudinage -- 10.6. Faults -- 10.7. Implications for Ice Core Stratigraphy -- 10.8. Ogives and Longitudinal Corrugations -- 10.9. Crevasses -- 10.9.1. Patterns and Conditions for Occurrence -- 10.9.2. Crevasse Depth and Propagation -- 10.9.3. Related Tensional Features -- 10.10. Structural Assemblages -- Further Reading -- ch. 11 Reaction of Glaciers to Environmental Changes -- 11.1. Introduction -- 11.2. Reaction to Changes of Mass Balance: Scales
11.2.1. Net Change of Glacier Length -- 11.2.2. Simple Models for Response -- 11.2.3. Simple Models for Different Zones -- 11.3. Reaction to Changes of Mass Balance: Dynamics -- 11.3.1. Theoretical Framework -- 11.3.2. Ice Thickness Changes -- 11.3.3. Relative Importance of Diffusion and Kinematic Waves -- 11.3.4. Numerical Models of Glacier Variation -- 11.4. Reactions to Additional Forcings -- 11.4.1. Response of Glaciers to Ice and Bed Changes -- 11.4.2. Factors Influencing the Reaction of an Ice Sheet to the End of an Ice Age -- 11.4.3. Ice Flow Increased by Water Input -- 11.5. Changes at a Marine Margin -- 11.5.1. Conceptual Framework
11.5.2. The Tidewater Glacier Cycle -- 11.5.3. Interactions of Ice Shelves and Inland Ice -- 11.5.4. Forcing by Sea-level Rise -- Further Reading -- ch. 12 Glacier Surges -- 12.1. Introduction -- 12.2. Characteristics of Surging Glaciers -- 12.2.1. Spatial Distribution and Relation to Geological Setting -- 12.2.2. Distribution in Time -- 12.2.3. Temperature Characteristics -- 12.2.4. Characteristics of Form and Velocity -- 12.3. Detailed Observations of Surges -- 12.3.1. Surges of Temperate Glaciers -- 12.3.2. The Role of Water: Variegated Glacier -- 12.3.3. Surges Where the Bed Is Partly Frozen -- 12.3.4. Surges of Polythermal Tidewater Glaciers -- 12.4. Surge Mechanisms -- 12.4.1. General Evidence Relevant to the Mechanism -- 12.4.2. The Mechanism for Temperate Glaciers -- 12.4.3. Polythermal Glaciers
12.5. Surging of Ice Sheets? -- 12.6. Ice Avalanches -- ch. 13 Ice Sheets and the Earth System -- 13.1. Introduction -- 13.2. Interaction of Ice Sheets with the Earth System -- 13.2.1. Processes Driving Ice Sheet Change -- 13.2.2. Feedback Processes -- 13.3. Growth and Decay of Quaternary Ice Sheets -- 13.3.1. Relation to Milankovitch Forcings -- 13.3.2. Climate Forcings at the LGM -- 13.3.3. Onset of Quaternary Cycles -- 13.3.4. Heinrich Events -- 13.4. Ice Sheet Evolution Models -- 13.4.1. Model Components -- 13.4.2. Model Calibration -- 13.4.3. Simulations of Quaternary Ice Sheets -- Further Reading -- ch. 14 Ice, Sea Level, and Contemporary Climate Change -- 14.1. Introduction -- 14.1.1. Equivalent Sea Level -- 14.1.2. Recent Climate and Sea-level Change -- 14.2. Global Warming and Mountain Glaciers -- 14.2.1. History of Glacier Lengths -- 14.2.2. Worldwide Mass Balance of Mountain Glaciers and Small Ice Caps
14.2.3. Sea-level Forecasts: Mountain Glaciers and Small Ice Caps -- 14.3. The Ice Sheets and Global Warming -- 14.3.1. Greenland -- 14.3.2. Antarctica -- 14.3.3. Model Forecasts of Ice Sheet Contributions to Sea-level Change -- 14.3.4. Simple Approaches to Forecasts for the Century Ahead -- 14.4. Summary -- 14.4.1. Recent Sea-level Rise -- 14.4.2. The Twentieth Century -- 14.4.3. This Century -- ch. 15 Ice Core Studies -- 15.1. Introduction -- 15.1.1. Some Essential Terms and Concepts -- 15.1.2. Delta Notation -- 15.2. Relation Between Depth and Age -- 15.2.1. Theoretical Relations -- 15.2.2. Determination of Ages -- 15.2.3. Difference of Gas and Ice Ages -- 15.3. Fractionation of Gases in Polar Firn -- 15.4. Total Air Content -- 15.5. Stable Isotopes of Ice -- 15.5.1. Conceptual Model -- 15.5.2. Interpretation of Records -- 15.6. Additional Techniques of Temperature Reconstruction -- 15.6.1. Borehole Temperatures
15.6.2. Melt Layers -- 15.6.3. Thermal and Gravitational Fractionation of Gases -- 15.7. Estimation of Past Accumulation Rates -- 15.8. Greenhouse Gas Records -- 15.8.1. Histories of Atmospheric Concentration -- 15.8.2. Isotopic Compositions of Greenhouse Gases -- 15.9. Gas Indicators of Global Parameters -- 15.9.1. Global Mean Ocean Temperature -- 15.9.2. Global Biological Productivity -- 15.10. Particulate and Soluble Impurities -- 15.10.1. Electrical Conductivity Measurement (ECM) -- 15.10.2. Primary Aerosols -- 15.10.3. Secondary Aerosols -- 15.11. Examples of Multiparameter Records from Ice Sheets -- 15.11.1. Deglacial Climate Change -- 15.11.2. A Long Record of Climate Cycling -- 15.12. Low-latitude Ice Cores -- 15.13. Surface Exposures in Ablation Zones -- Further Reading.
Review: "Now in its fourth edition, this classic text covers the physical principles underlying the behavior of glaciers---terrestrial ice bodies originating as accumulations of snow---including mountain glaciers, small ice caps, ice sheets, and ice shelves. New and expanded chapters discuss climate change topics, including: how ice core studies obtain information about past climate and atmospheric composition; the reaction of glaciers and ice sheets to global warming; quaternary climate history and the ice ages; and the challenge of projecting future sea-level rise. The book explores many additional topics of interest to geologists and geophysicists who study tectonics and geomorphology."--BOOK JACKET.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
BOOK BOOK NCAR Library Foothills Lab GB2403.2 .C84 2010 1 Checked out 07/01/2024 50583020005249
Total holds: 0

Rev. ed. of : The physics of glaciers / W.S.B. Paterson. 3rd ed. 2010

Includes bibliographical references and index.

"Now in its fourth edition, this classic text covers the physical principles underlying the behavior of glaciers---terrestrial ice bodies originating as accumulations of snow---including mountain glaciers, small ice caps, ice sheets, and ice shelves. New and expanded chapters discuss climate change topics, including: how ice core studies obtain information about past climate and atmospheric composition; the reaction of glaciers and ice sheets to global warming; quaternary climate history and the ice ages; and the challenge of projecting future sea-level rise. The book explores many additional topics of interest to geologists and geophysicists who study tectonics and geomorphology."--BOOK JACKET.

Machine generated contents note: ch. 1 Introduction -- 1.1. Introduction -- 1.2. History and Perspective -- 1.3. Organization of the Book -- Further Reading -- ch. 2 Transformation of Snow to Ice -- 2.1. Introduction -- 2.2. Snow, Firn, and Ice -- 2.2.1. Density of Ice -- 2.3. Zones in a Glacier -- 2.3.1. Distribution of Zones -- 2.4. Variation of Density with Depth in Firn -- 2.5. Snow to Ice Transformation in a Dry-snow Zone -- 2.5.1. Processes -- 2.5.2. Models of Density Profiles in Dry Firn -- 2.5.3. Reduction of Gas Mobility -- 2.6. Hoar Layers -- 2.7. Transformation When Meltwater Is Present -- Further Reading -- ch. 3 Crain-Scale Structures and Deformation of Ice -- 3.1. Introduction -- 3.2. Properties of a Single Ice Crystal -- 3.2.1. Structure -- 3.2.2. Deformation of a Single Crystal -- 3.3. Polycrystalline Ice: Grain-scale Forms and Processes -- 3.3.1. Orientation Fabrics: Brief Description -- 3.3.2. Impurities and Bubbles -- 3.3.3. Texture and Recrystallization

3.3.4. Formation of C-axis Orientation Fabrics -- 3.3.5. Mechanisms of Polycrystalline Deformation -- 3.4. Bulk Creep Properties of Polycrystalline Ice -- 3.4.1. Strain Rate and Incompressibility -- 3.4.2. Deviatoric Stress -- 3.4.3. Bench-top Experiments: The Three Phases of Creep -- 3.4.4. Isotropic Creep Behavior -- 3.4.5. Controls on Creep Parameter A -- 3.4.6. Recommended Isotropic Creep Relation and Values for A -- 3.4.7. Anisotropic Creep of Ice -- 3.5. Elastic Deformation of Polycrystalline Ice -- Appendix 3.1 -- Appendix. 3.2: Data for Figure 3.16 -- ch. 4 Mass Balance Processes: 1. Overview and Regimes -- 4.1. Introduction -- 4.1.1. Notes on Terminology -- 4.2. Surface Mass Balance -- 4.2.1. Surface Accumulation Processes -- 4.2.2. Surface Ablation Processes -- 4.2.3. Annual (Net) Balance and the Seasonal Cycle -- 4.2.4. Annual Glacier Balance and Average Specific Balances -- 4.2.5. Variation of Surface Balance with Altitude -- 4.2.6. Generalized Relation of Surface Balance to Temperature and Precipitation -- 4.2.7. Relation of Glacier-wide Balance to the Area-Altitude Distribution

4.3. Mass Balance Variations of Mountain Glaciers -- 4.3.1. Interannual Fluctuations of Balance -- 4.3.2. Cumulative Balance and Delayed Adjustments -- 4.3.3. Regional Variations of Mass Balance -- 4.4. Englacial Mass Balance -- 4.4.1. Internal Accumulation -- 4.4.2. Internal Ablation -- 4.5. Basal Mass Balance -- 4.5.1. Basal Accumulation -- 4.5.2. Basal Ablation -- 4.6. Mass Loss by Calving -- 4.6.1. The Calving Spectrum -- 4.6.2. Calving from Tidewater Glaciers -- 4.6.3. Calving from Ice Shelves -- 4.6.4. Calving Relations for Ice Sheet Models -- 4.7. Methods for Determining Glacier Mass Balance -- 4.8. Mass Balance Regimes of the Ice Sheets -- 4.8.1. Greenland Ice Sheet -- 4.8.2. Antarctic Ice Sheet -- Further Reading -- ch. 5 Mass Balance Processes: 2. Surface Ablation and Energy Budget -- 5.1. Introduction -- 5.1.1. Radiation -- 5.1.2. Energy Budget of Earth's Atmosphere and Surface -- 5.2. Statement of the Surface Energy Budget -- 5.2.1. Driving and Responding Factors in the Energy Budget -- 5.2.2. Melt and Warming Driven by Net Energy Flux -- 5.3. Components of the Net Energy Flux

5.3.1. Downward Shortwave Radiation -- 5.3.2. Reflected Shortwave Radiation -- 5.3.3. Longwave Radiation -- 5.3.4. Field Example, Net Radiation Budget -- 5.3.5. Subsurface Conduction and Radiation -- 5.3.6. Turbulent Fluxes -- 5.4. Relation of Ablation to Climate -- 5.4.1. Calculating Melt from Energy Budget Measurements -- 5.4.2. Simple Approaches to Modelling Melt -- 5.4.3. Increase of Ablation with Warming -- 5.4.4. Importance of the Frequency of Different Weather Conditions -- 5.4.5. Energy Budget Regimes -- Further Reading -- ch. 6 Glacial Hydrology -- 6.1. Introduction -- 6.1.1. Permeability of Glacier Ice -- 6.1.2. Effective Pressure -- 6.2. Features of the Hydrologic System -- 6.2.1. Surface (Supraglacial) Hydrology -- 6.2.2. Englacial Hydrology -- 6.2.3. Subglacial Hydrology -- 6.2.4. Runoff from Glaciers -- 6.3. The Water System within Temperate Glaciers -- 6.3.1. Direction of Flow -- 6.3.2. Drainage in Conduits -- 6.3.3. Drainage in Linked Cavities -- 6.3.4. Subglacial Drainage on a Soft Bed -- 6.3.5. Summary of Water Systems at the Glacier Bed

6.3.6. System Behavior -- 6.4. Glacial Hydrological Phenomena -- 6.4.1. Jokulhlaups -- 6.4.2. Antarctic Subglacial Lakes -- Further Reading -- ch. 7 Basal Slip -- 7.1. Introduction -- 7.1.1. Measurements of Basal Velocity -- 7.1.2. Local vs. Global Control of Basal Velocity -- 7.2. Hard Beds -- 7.2.1. Weertman's Theory of Sliding -- 7.2.2. Observations at the Glacier Sole -- 7.2.3. Improvements to Weertman's Analysis -- 7.2.4. Discussion of Assumptions -- 7.2.5. Comparison of Predictions with Observations -- 7.2.6. How Water Changes Sliding Velocity on Hard Beds -- 7.2.7. Sliding of Debris-laden Ice -- 7.2.8. Sliding at Sub-Freezing Temperatures -- 7.2.9. Hard-bed Sliding: Summary and Outlook -- 7.3. Deformable Beds -- 7.3.1. Key Observations -- 7.3.2. Till Properties and Processes -- 7.3.3. Constitutive Behaviors -- 7.3.4. Slip Rate ub on a Deformable Bed -- 7.3.5. Large-scale Behavior of Soft Beds -- 7.3.6. Continuity of Till -- 7.3.7. Additional Geological Information -- 7.4. Practical Relations for Basal Slip and Drag -- Further Reading

Ch. 8 The Flow of Ice Masses -- 8.1. Introduction -- 8.1.1. Ice Flux -- 8.1.2. Balance Velocities -- 8.1.3. Actual Velocities -- 8.1. How Surface Velocities Are Measured -- 8.2. Driving and Resisting Stresses -- 8.2.1. Driving Stress and Basal Shear Stress -- 8.2.2. Additional Resisting Forces and the Force Balance -- 8.2.3. Factors Controlling Resistance and Flow -- 8.2.4. Effective Driving Force of a Vertical Cliff -- 8.3. Vertical Profiles of Flow -- 8.3.1. Parallel Flow -- 8.3.2. Observed Complications in Shear Profiles -- 8.4. Fundamental Properties of Extending and Compressing Flows -- 8.4.1. General Concepts -- 8.4.2. Uniform Extension or Compression -- 8.5. General Governing Relations -- 8.5.1. Local Stress-equilibrium Relations -- 8.5.2. General Solutions for Stress and Velocity -- 8.5.3. Vertically Integrated Force Balance -- 8.5.4. General Mass Conservation Relation (Equation of Continuity) -- 8.5.5. Vertically Integrated Continuity Equations -- 8.6. Effects of Valley Walls and Shear Margins -- 8.6.1. Transverse Velocity Profile Where Basal Resistance Is Small

8.6.2. Combined Effects of Side and Basal Resistances -- 8.7. Variations Along a Flow Line -- 8.7.1. Factors Controlling Longitudinal Strain Rate -- 8.7.2. Local-scale Variation: Longitudinal Stress-gradient Coupling -- 8.7.3. Large-Scale Variation -- 8.8. Flow at Tidewater Margins -- 8.8.1. Theory -- 8.8.2. Observations: Columbia Glacier -- 8.9. Ice Sheets: Flow Components -- 8.9.1. Flow at a Divide -- 8.9.2. Ice Streams -- 8.9.3. Ice Shelves -- 8.9.4. Transition Zone Between Grounded and Floating Ice -- 8.9.5. Flow Over Subglacial Lakes -- 8.10. Surface Profiles of Ice Sheets -- 8.10.1. Profile Equations -- 8.10.2. Other Factors Influencing Profiles -- 8.10.3. Relation Between Ice Area and Volume -- 8.10.4. Travel Times -- 8.10.5. Local-scale Relation of Surface and Bed Topography -- Further Reading -- ch. 9 Temperatures in Ice Masses -- 9.1. Introduction -- 9.2. Thermal Parameters of Ice and Snow -- 9.3. Temperature of Surface Layers -- 9.4. Temperate Glaciers -- 9.4.1. Ice Temperature -- 9.4.2. Origin and Effect of Water -- 9.4.3. Distribution of Temperate Glaciers

9.5. Steady-state Temperature Distributions -- 9.5.1. Steady-state Vertical Temperature Profile -- 9.6. Measured Temperature Profiles -- 9.7. General Equation of Heat Transfer -- 9.7.1. Derivation of Equation -- 9.7.2. Boundary and Basal Conditions -- 9.8. Temperatures Along a Flow Line -- 9.8.1. Observations -- 9.9. Time-varying Temperatures -- 9.10. Temperatures in Ice Shelves -- ch. 10 Large-Scale Structures -- 10.1. Introduction -- 10.2. Sedimentary Layers -- 10.3. Foliation -- 10.3.1. Elongate Bubble Forms -- 10.3.2. Finite Strain -- 10.4. Folds -- 10.4.1. Folding in Central Regions of Ice Sheets -- 10.5. Boudinage -- 10.6. Faults -- 10.7. Implications for Ice Core Stratigraphy -- 10.8. Ogives and Longitudinal Corrugations -- 10.9. Crevasses -- 10.9.1. Patterns and Conditions for Occurrence -- 10.9.2. Crevasse Depth and Propagation -- 10.9.3. Related Tensional Features -- 10.10. Structural Assemblages -- Further Reading -- ch. 11 Reaction of Glaciers to Environmental Changes -- 11.1. Introduction -- 11.2. Reaction to Changes of Mass Balance: Scales

11.2.1. Net Change of Glacier Length -- 11.2.2. Simple Models for Response -- 11.2.3. Simple Models for Different Zones -- 11.3. Reaction to Changes of Mass Balance: Dynamics -- 11.3.1. Theoretical Framework -- 11.3.2. Ice Thickness Changes -- 11.3.3. Relative Importance of Diffusion and Kinematic Waves -- 11.3.4. Numerical Models of Glacier Variation -- 11.4. Reactions to Additional Forcings -- 11.4.1. Response of Glaciers to Ice and Bed Changes -- 11.4.2. Factors Influencing the Reaction of an Ice Sheet to the End of an Ice Age -- 11.4.3. Ice Flow Increased by Water Input -- 11.5. Changes at a Marine Margin -- 11.5.1. Conceptual Framework

Note continued: 11.5.2. The Tidewater Glacier Cycle -- 11.5.3. Interactions of Ice Shelves and Inland Ice -- 11.5.4. Forcing by Sea-level Rise -- Further Reading -- ch. 12 Glacier Surges -- 12.1. Introduction -- 12.2. Characteristics of Surging Glaciers -- 12.2.1. Spatial Distribution and Relation to Geological Setting -- 12.2.2. Distribution in Time -- 12.2.3. Temperature Characteristics -- 12.2.4. Characteristics of Form and Velocity -- 12.3. Detailed Observations of Surges -- 12.3.1. Surges of Temperate Glaciers -- 12.3.2. The Role of Water: Variegated Glacier -- 12.3.3. Surges Where the Bed Is Partly Frozen -- 12.3.4. Surges of Polythermal Tidewater Glaciers -- 12.4. Surge Mechanisms -- 12.4.1. General Evidence Relevant to the Mechanism -- 12.4.2. The Mechanism for Temperate Glaciers -- 12.4.3. Polythermal Glaciers

12.5. Surging of Ice Sheets? -- 12.6. Ice Avalanches -- ch. 13 Ice Sheets and the Earth System -- 13.1. Introduction -- 13.2. Interaction of Ice Sheets with the Earth System -- 13.2.1. Processes Driving Ice Sheet Change -- 13.2.2. Feedback Processes -- 13.3. Growth and Decay of Quaternary Ice Sheets -- 13.3.1. Relation to Milankovitch Forcings -- 13.3.2. Climate Forcings at the LGM -- 13.3.3. Onset of Quaternary Cycles -- 13.3.4. Heinrich Events -- 13.4. Ice Sheet Evolution Models -- 13.4.1. Model Components -- 13.4.2. Model Calibration -- 13.4.3. Simulations of Quaternary Ice Sheets -- Further Reading -- ch. 14 Ice, Sea Level, and Contemporary Climate Change -- 14.1. Introduction -- 14.1.1. Equivalent Sea Level -- 14.1.2. Recent Climate and Sea-level Change -- 14.2. Global Warming and Mountain Glaciers -- 14.2.1. History of Glacier Lengths -- 14.2.2. Worldwide Mass Balance of Mountain Glaciers and Small Ice Caps

14.2.3. Sea-level Forecasts: Mountain Glaciers and Small Ice Caps -- 14.3. The Ice Sheets and Global Warming -- 14.3.1. Greenland -- 14.3.2. Antarctica -- 14.3.3. Model Forecasts of Ice Sheet Contributions to Sea-level Change -- 14.3.4. Simple Approaches to Forecasts for the Century Ahead -- 14.4. Summary -- 14.4.1. Recent Sea-level Rise -- 14.4.2. The Twentieth Century -- 14.4.3. This Century -- ch. 15 Ice Core Studies -- 15.1. Introduction -- 15.1.1. Some Essential Terms and Concepts -- 15.1.2. Delta Notation -- 15.2. Relation Between Depth and Age -- 15.2.1. Theoretical Relations -- 15.2.2. Determination of Ages -- 15.2.3. Difference of Gas and Ice Ages -- 15.3. Fractionation of Gases in Polar Firn -- 15.4. Total Air Content -- 15.5. Stable Isotopes of Ice -- 15.5.1. Conceptual Model -- 15.5.2. Interpretation of Records -- 15.6. Additional Techniques of Temperature Reconstruction -- 15.6.1. Borehole Temperatures

15.6.2. Melt Layers -- 15.6.3. Thermal and Gravitational Fractionation of Gases -- 15.7. Estimation of Past Accumulation Rates -- 15.8. Greenhouse Gas Records -- 15.8.1. Histories of Atmospheric Concentration -- 15.8.2. Isotopic Compositions of Greenhouse Gases -- 15.9. Gas Indicators of Global Parameters -- 15.9.1. Global Mean Ocean Temperature -- 15.9.2. Global Biological Productivity -- 15.10. Particulate and Soluble Impurities -- 15.10.1. Electrical Conductivity Measurement (ECM) -- 15.10.2. Primary Aerosols -- 15.10.3. Secondary Aerosols -- 15.11. Examples of Multiparameter Records from Ice Sheets -- 15.11.1. Deglacial Climate Change -- 15.11.2. A Long Record of Climate Cycling -- 15.12. Low-latitude Ice Cores -- 15.13. Surface Exposures in Ablation Zones -- Further Reading.

Questions? Email library@ucar.edu.

Not finding what you are looking for? InterLibrary Loan.