Normal view MARC view ISBD view

Introduction to machine learning / Ethem Alpaydin.

By: Alpaydin, Ethem [author.].
Series: Adaptive computation and machine learning: Publisher: Cambridge, Massachusetts : The MIT Press, [2014]Copyright date: 2014Edition: Third edition.Description: xxii, 613 pages : illustrations.Content type: text Media type: unmediated Carrier type: volumeISBN: 9780262325745; 0262325748.Subject(s): Machine learning | COMPUTERS -- General | Machine learningGenre/Form: Electronic books. | Electronic books. | Electronic books. DDC classification: 006.3/1 LOC classification: Q325.5 | .A46 2014
Contents:
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
Summary: Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of this title reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods. -- Edited summary from book.
List(s) this item appears in: 2019 New Titles | Data Analysis
Item type Current location Call number Copy number Status Date due Barcode Item holds
BOOK BOOK NCAR Library
Foothills Lab
Q325.5 .A46 2014 1 Checked out 10/01/2021 50583020010215
Total holds: 0

Includes bibliographical references (page 203) and index.

Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of this title reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods. -- Edited summary from book.

Print version record.

Other editions of this work

Introduction to machine learning / by Alpaydin, Ethem. ©2004

Questions? Email library@ucar.edu.

Not finding what you are looking for? InterLibrary Loan.